
2.0 STUDY DESIGN 

The EPA Region 4 South Florida Ecosystem Assessment Project, was designed to permit 

synoptic sampling of the canals and marshes of South Florida. The design was based on the 

sample survey procedures developed in the EPA Environmental Monitoring and Assessment 

Program (EMAP). The study design is presented in this chapter. In addition, four marsh transects 

were sampled along known nutrient gradients, and canal water control structures were sampled 

for Hg in water on a biweekly schedule for 3 years (i.e., February 1994 through February 1997) 

(F igure 2.1 ). 

2.1 Design Rationale 

There are two distinct paradigms for evaluating regional ecological status and trends. The 

two paradigms are rooted in very different perceptions of regional evaluation and lead to 

correspondently different methods for making regional inferences. ln one, the sites are selected 

based on their anticipated abil ity to reflect regional characteristics. The site features used in site 

selection may be physical characteristics, spatial pattern, expected sensitivity to stress, anticipated 

exposure level, or any other aspect that might influence the response of the site to known or 

suspected environmental stresses. The quality of the resulting data depends on the judgement of 

the investigator. This approach can lead to biased estimates of environmental parameters. 

Moreover, it is difficult to assess sampling variability using this approach. An example of this 

approach is the design used to sample the marsh transects along known nutrient gradients. 

EMAP uses an alternative approach that requires a probability sample. A key property of a 

probability sample is that every element in the population has some chance of being included in 

the sample. Jfthis were not the case, then some parts of the population might as well not exist, 

because their condition could have no influence on estimates of population characteristics. This 

property has a side benefit, in that it forces an explicit and complete definition of the population 

being described. This may seem trivial; however, in practice, it is almost never easy to tightly 

delimit a real, physical population. Another requirement of a probability sample is that the chance 

of being included in the sample is known for every element in the population. This requirement is 
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satisfied if there is an explic it, well-understood mechanism that incorporates a random process in 

the selection of the sample. Thus, a probability sample has three crucial characteristics that 

distinguish it from other types of samples: ( I) the population being sampled is explic itly described; 

(2) every element in the population has some opportunity of actually being sampled; and (3) the 

selection is carried out by a process that includes an expl icit random element. These three 

characteristics ensure that a probability based sample provides a degree of comprehensive 

coverage that is not easily achieved with other methods. Furthermore, the probabi lity based 

sampl ing approach can lead to more precise estimates. 

A probabil ity sample does not have to be a purely random sample, and in most cases 

should not be. In the case of environmental samples, there is almost always a great benefit in the 

spatial context of the sample sites. In simplest terms. spatial context is the information required to 

locate a sample point on the landscape, for example, latitude and longitude. However, there is a 

richer connotation in a ll o f the available landscape information that can be attached to geographic 

coordinates: ecoregion, land use, soi l type, vegetation cover, topography, and so on. Knowing the 

spatial context of a sample (i.e., knowing where the samples are located and knowing their spatial 

relationship to one another) provides the link of proximity to admit the joint evaluation of multiple 

responses, and to evaluate the effects of stresses with known spatial properties. The value of a 

probability sample is greatly enhanced if it is structured so that the sample preserves the spatial 

context of the population. Although any random sample accomplishes this in a sense, there is a 

great advantage to placing some spatial constraints on the sample so that the spatial distribution of 

the sample closely matches the spatial distribution of the population (i.e., the sample should in 

some sense be evenly distributed over the spatial extent of the population). EMAP's sampling 

methodo logy uses a grid, as described in the next section, to accomplish spatial dispersion of the 

sample while retaining the essential characteristics of a probability sample. The probability based 

sampling approach used in this study, for example, can be used to estimate the percent of canals 

with TP concentrations greater than some maximum or minimum threshold, or the percent of the 

marsh sampled where THg concentrations are greater than a maximum concentration specified. 
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2.1. 1 Sampling Method 

An obvious means to ensure sample distribution over the extent of the population is to use 

a systematic sample, say regularly spaced samples down the length of a canal or at the nodes of a 

regular grid placed over a marsh. The major disadvantage of a systematic sample is that a 

rigorous, design-based estimate of variance is impossible, even if there is an explicit random 

placement of the grid or start of the regularly spaced linear sample. The requirement for a 

probability sample is that every element of the population has positive probability of being in the 

sample; a variance estimate is possible if, in addition, every pair of elements in the population has 

positive probabil ity of being in the sample simultaneously. A systematic sample does not satisfy 

this latter requirement. 

The design used to sample the Everglades is based on a grid in order to ensure spatial 

coverage, but includes some additional randomization, to ensure that a variance estimate is 

possible. The basic concept is to random ly locate a grid over the area to be sampled and, within 

each polygon defined by the grid cells, to select one point at random. The basic design is called a 

random tessellation stratified (RTS) design (Bell house 1977, Dalenius et al. 1961, Olea 1984, 

Overton and Stehman 1993, Stevens 1997). 

The basic RTS design results in every element of the population having the same chance of 

being included in the sample. Extensions that allow for variable inclusion probability are discussed 

in Overton et a l. ( 1990) and Stevens (1997). The concept behind the variable probability 

extensions is to group the grid cells together to form larger polygons that a lso constitute a 

tessellation by congruent polygons. Figure 2.2 illustrates the concept, where the tessellation 

hexagons of a triangular grid are joined in groups of seven to form a collection of larger 

tessellation polygons represented by the solid lines. Variable probability is accomplished by 

picking one or more points from each group, and allowing the number of points picked to vary by 

spatial region. Stevens ( 1997) gives complete details of the variable probability versions of the 

RTS design, and Stevens and Kincaid (1997) give an easi ly computable and nearly unbiased 

variance estimator. 

The design of the sampl ing in the Everglades was intended to obtain samples from both 

canals and marshes, to extend over 2 years, and to sample in both wet and dry seasons in each 
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year. Thus, there would be four sampl ing periods (2 seasons in 2 years) in both canals and 

marshes. A spatia lly interpenetrating design given by a 4-fold decomposition of EMAP's basic 

triangular grid (Overton et at. 1990, Stevens 1994) was chosen. In this approach, the grid cells 

composing the tessellation are split into four interlocking sets, and one set of cells is sampled each 

period. 

The marsh sample was a straightforward application of these concepts. The area to be 

sampled was defined by a Geographic Information System (GIS) coverage and consisted of 

LNWR, WCA2, WCA3, ENP, and the eastern sector ofBCNP. The sample was equ iprobable 

with the exception of BCNP, which was sampled at one-third the intensity of the rest of the 

Everglades. A final design criterion of a maximum of 125 sampling sites per synoptic cycle. which 

included consideration of logistical and laboratory efficiencies, was placed on the marsh design. 

The canal sample was selected differently because of the linear, essentially 

one-dimensional nature of the canals. The base EMAP grid was intensified by a factor of 7, 

resulting in a triangular grid with hexagonal cells having an area of approximately 90.1 krn2 each. 

A GIS was used to extract and randomly order the canal segments within each cell , where 

segments were defined by confluences or cell boundaries. The grid cells, along with the associated 

canal segments, were then randomly ordered, using the randomization procedure based on spatial 

partitioning described in Stevens ( 1994). This randomization gave it a linear order that preserved 

some ofthe spatial proximity relationship. The result ofthis process was a random mapping of the 

entire length of canals onto a single line in such a manner that every point on the line represented 

a known canal location (Figure 2.2). This line was then spl it into four pieces using the same grid 

decomposition as in the marsh sample and a sample selected from each piece using a systematic 

sample with a random start. The random mapping prior to the systematic sample ensures that 

every pair of points on the canals had a positive probability of being included in the sample, and 

the spatial-partitioning-based randomization ensures that the sample is well-distributed over the 

extent of the canals. A criterion of a maximum of 50 sampling sites per synoptic cycle was placed 

on the canal design. 

2-4 



2.1.2 Sample Points 

This random probability-based sampling strategy was used to select sites in the Everglades 

ecosystem from south of Lake Okeechobee to the mangrove fringe on Florida Bay and from the 

ridge along the eastern coast into BCNP on the west. The distribution of200 canal sample sites is 

shown in Figure 2.3 while the distribution of 500 marsh sample sites is shown in Figure 2.4. The 

sample points represent the current ecological condition in over I ,200 km (750 miles) of canals 

and in over 7,800 km2 of marsh (3,000 mi2 of marsh [over 2 million acres]). The canals were 

sampled in September 1993, May and September 1994, and May 1995. The marshes were 

sampled in April and September 1995 and May and September 1996. This corresponds to two dry 

(Apri l and May) and two wet (September) seasons for both systems over a 2-year period. The 

project sampling included water, canal sediment, marsh soil, fish, macrophytes, and 

algae/periphyton at each canal and marsh sampl ing location during each sampling period. The 

parameters that were measured at each site can be used to answer questions on multiple issues, 

including eutrophication, Hg contamination, habitat alteration, and hydropattern modification. 

2.1.3 Design-Based Estimation 

There are two approaches to regional inference that are roughly parallel to the two 

methods of sample selection. (See Hansen et al. [ 1983] and the following discussion for a good 

contrast of these two approaches.) Briefly, a "model-based'" approach uses conceptual, statistical, 

and mathematical models to draw inferences to regional populations based on in-depth 

information from a limited number of sites. The model may not be explic it (e.g., it may be 

embodied in the set of criteria used to select representative sites). The model speci fies the 

relationship of the sites to the regional population, and the validity of the population inferences 

rests on the validity of the model. Model-based inference makes inferences about parameters of 

the model that generates the data and not about the population itself. In contrast, a design-based 

program is essentially an empirical approach. The design specifies what information is to be 

collected where, and the design stipulates the popu lation inference. The validity of the inference 

rests on the ability of the design to produce regionally representative information. In general, 
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design-based programs rely on the methods of statistical survey sampling (see, for example, 

Cochran 1977) and are valid only with a probability sample. 

Both approaches draw inferences by calculating estimators of population quantities 

(e.g., mean values, variance, and spatial pattern), and both rely on statistical theory to describe 

properties of the estimators. The properties most often used are descriptions of the expected 

behavior of the estimators: their variance, mean square error, bias, consistency, etc. The clearest 

contrast between model-based and design-based approaches lies in the basis for that expectation. 

Model-based methods rely on an assumed statistical model that describes the error distribution 

(i.e., the distribution ofthe discrepancies between reality and model results); expectations are then 

averages over possible error realizations. Design-based approaches rely on the explicit 

randomization used in selection of sample locations; expectations are averages over all possible 

samples. 

A model-based approach uses information from sites in the population regardless of how 

they came to be selected. The sites may have been purposefully selected, they may be available 

because of historical circumstances, or they may be the result of a designed probability sample. In 

any case, inference to an associated population rests on the assumption that the behavior of the 

selected sites reflects and is typical of the behavior of the population. In a long-term monitoring 

program aimed at status and nonspecific change in a spatially distributed population subjected to 

nonuniform stresses, that assumption does not seem tenable under a judgmental sample selection 

protocol. 

A probability sample allows the use of both design- and model-based analyses. Moreover, 

even if the model-based analysis does not make explicit use of the probability structure of the 

sample, the model-based inference is strengthened by the characteristics of a probability sample. 

Model-based parameter estimates can be biased under a judgement sam piing design. 

Hansen et al. (1983) makes several relevant points in their discussion of 

design-based versus model-based inference. One that is particularly relevant for an environmental 

monitoring program is that a probability sample permits inferences that are free of even the 

appearance of subjectivity. A probability sample from an explicitly defined resource population is 

a means of certifying that the data collected are free from any selection bias, conscious or not. 
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This requirement is essential for a program such as EMAP that aims at describing the condition of 

our national ecological resources. Moreover, analysis methods that are as free as possible from 

the appearance of subjectivity are also avai lable under a design-based protoco l. 

2.1.4 Variable Probability Estimation 

A requirement of a probability sample is that the probability of being included in the 

sample must be known for every element in the population. In a continuous, extensive population 

like the Everglades, this knowledge is contained in an inclusion probabi lity density function n(s). 

The requirement is that n(s) be a known function, and that n(s) > 0 for every point s in the 

Everglades. Besides controlling the random selection process, n(s) plays a critical role in the 

inference and analysis stage. The inclusion function specifies the density of sample points; 

therefore, it has units with dimensions like the number of sample points per unit of area (e.g., 

I sample point in 635 km2 (245 mi2
]). Conversely, the reciprocal of the inclusion function has 

units of area per sample point, and thus gives the amount of area that each sample point 

represents. A design-based analysis of a sample with varying inclusion density function needs to 

account for the different weight attached to each observation (i.e., the different amount of area 

represented by each point). From the above discussion, the proper way to give each observation 

its correct weight is to multiply each observation by the reciprocal of the inclusion density 

function at the observation site. For example, if we have samples at locations s1, s1 , ... , S11 , with 

corresponding observations z 1 , z 1 , ... , Z11 , then the estimate of the mean value of z is 

II 

" z(s.) II I 
L - 1 I L -
l : 1 n(s

1
) 1 ~ 1 n(s

1
) 

L z(s;) w(s;) 
i - 1 

where w(s,) = I /n(s
1
). This is the essence of the Horvitz-Thompson Theorem (Horvitz and 

Thompson 1952, Cordy 1993), which provides general estimating formulae along with 

accompanying variance expressions. 

In general, the variance of a quantity estimated from a probability sample depends not only 

on the inclusion density function. but also on the pairwise probabilities of any two points being 
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included. Again, the general estimating equations are given in Horvitz and Thompson (1952), 

Cordy (1993), or Stevens ( 1997). There is, however, a simplifying assumption that leads to a 

simple estimate of variance. The assumption is that the sample arose from independent drawings 

from the population. If the population has the characteristic that values measured on sites that are 

close together tend to be more similar than values measured on sites that are far apart, then that 

simplifying assumption leads to a conservative (i.e., larger than the true value) estimate of 

variance. To apply this assumption to estimate the variance of j} z, we first calcu late 

the quantities d(s;) = [z(s)-~=]w(s;). Then 
nS2(d) 
n 

, where S2(d) is the 

CE w(s;)f 
i -I 

fam iliar estimator of the sample variance of the d, from a simple random sample, that is, 

n 

'L di 
; : I ; : I (since (since d = ;: 1 

- 0). As noted above, this method 
n n - 1 n - I 

wi ll generally understate the true precision of the estimate. The degree of understatement depends 

on the smoothness of the sampled surface, that is how smoothly zM changes over the population 

domain. If the surface is very rough in the sense that there is likely to be a little more 

correspondence between two adjacent points than between two widely separated points, then 

there should be little or no understatement. If the surface is very smooth, then the variance 

estimate could be too large by a factor of2 or more (Stevens and Kincaid 1997). 

The above discussion deals with estimating a popu lation mean value and its variance. The 

same technique can be used to estimate the proportion of a popu lation that meets some criteria or 

falls within some category. For example, we may be interested in the proportion of the Everglades 

covered by cattai Is, or the proportion of the Everglades with water concentration of TP less than 

x. To do this, we form a new response variable that takes on the value I if a sample site meets the 

criteria or is in the category, and 0 otherwise. We call this new response the indicator variable for 

the criteria or category. For the category {land cover = cattails}, the 

2-8 



. . . . {1 , if s is covered with cattails md1cator vanable IS I 
1 (s) = 1 

• The mean value of the 
CD/IOI S I 0, Otherwise 

indicator variable is the proportion we want, and we estimate it and its variance using the same 
II 

L lcauail/5; )w(s;) 
method as for any other mean. Thus, for example, Pcaumls 

1 • I would give the 

estimated proportion of the sampled population in the land cover class "cattai ls" . 

The indicator variable technique can be used to obtain an estimate of the entire population 

distribution via a function known as the cumulative distribution function (edt). The cdf for a 

variable z, say F/x), gives the proportion of the population with z value less than or equal to x. 

For example, ifz is TP concentration in (units), then Frr(#) is the proportion of the population 

with TP concentration less than or equal to # (units). The cdf of z is estimated by picking a set of 

levels x 1 , x1 , ... , xk that span the range of z, and then estimating the mean values of the indicator 

II 

variables !<_ >(s.) 
- S X} I 

{I 'f ( ) . L l<=sx )(s;)w(s;) , I z S; IS $ x. A I ~ I ) 
J , so that F=(x

1
.) = ------0, otherwise " 

L w(s) 
; ~ I 

The concept of the indicator variable seems very simple, but it is in fact a very powerful 

tool for doing exploratory and comparative analyses of a complex probability sample. For 

example, the formulae above show how to compute the cdf for the entire population (e.g., the 

entire Everglades). But we can also use an indicator variable to estimate the cdf for a subset of 

our population. For example, suppose we want the cdf ofTP concentration for only that portion 

of the Everglades covered with catta ils. We use the ·'cattail'' indicator variable in the cdf 

II 

estimator equation to get 
L f(TPsx / 5;)1caumls(sl)w(s) 

A I ~ I J 
FTPicaumls(x) = ..;,_;--~~-------- At any particular value 

L lcaumls(sl )w(sl) 
1 - I 

x
1

, ft (:\':) would be the estimated proportion of the area covered by cattails with TP TPi cauails 'j 

concentration less than or equal to x,. We could also calculate the cdf for the area covered by 
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"sawgrass" using a "sawgrass" indicator variable, and compare the two cdf's. One way to make a 

quick and informative visual comparison is to calculate the two subpopulation cdfs at the same 

levels of the x-variable (TP in the example), and then plot corresponding values against one 

another, producing a plot known as a Q-Q plot (Q for "quantile"). If the two distributions are 

approximately equal, then they should plot on roughly a 1:1 line. 

Subpopulation analyses via indicator variables also can be used to examine associations 

between several variables. For example, we cou ld split the range ofTP concentration into "high," 

"medium," and " low," and then for each corresponding subpopulation, calculate the cdf of Hg in 

fish tissue. We could further define several geographical areas, for example, north of Alligator 

Alley (AA), between Alligator Alley and Tamiami Trail ('IT), and south of Tamiami Trail, and 

then compare Hg concentration for all nine subpopulations given by all combinations ofTP 

concentration and geographic region. The complexity of the association one can examine, or the 

number of variables involved is limited only by the availability of data. In the above, we suggested 

comparing the cdfs. For adequate precision in the estimate, a cdf estimate should be based on 30 

or more points. With fewer than 30 points in each subpopulation, it would be adv isable to 

compare proportions or means. In this case, the subpopulation analysis could look very much like 

an analysis of variance (ANOV A). 

2.2 Indicators 

An array of indicators was selected to address the water management, habitat, 

eutrophication, and Hg issues under investigation that cou ld be accommodated within the scope 

of the sampl ing design and the logistical limitations (Table 2. 1 and 2.2). Surface water 

measurements included water depth, temperature, DO, pH, specific conductivity, redox (Eh), 

turbidity, TP, total nitrogen (TN), total organic carbon (TOC), total ionic su lfate (TS04) , a lkaline 

phosphatase activity (APA), chlorophyll a (canals only), and THg and MeHg (Table 2.3). 

Whenever canal sites indicated a vertical differential existed between surface and bottom 

measurements of temperature and DO, a vertical profile was made through the water co lumn to 

define the stratification. In this report the term "soil" refers to those samples obtained from the 
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Table 2. 1 Water and soil/sediment chemical measurements to be taken at each site with the 
general rationale for measuremenl. 

Indicator Rationale for Inclusion 

Water Quality 

DO Anaerobic condition promotes methylation; impacted by 
eutrophication, water quality standard 

Specific conductivity Ionic strength influences metal toxicity, indicates water 
source/history 

pH MeHg often found in low pH systems 

Turbidity Particulate metal transport, reduces water clarity for primary 
production 

TOC Affects meta l partitioning 

APA Sensitive indicator of eutrophication 

THg Total mercury pool, by media 

MeHg Biologically accumulated Hg species 

TP Indicator of eutrophication 

TN Indicator of eutrophication 

TS04 Influences Hg methylation, microbial processes, eutrophication 

SoiVSediment Quality 

Bulk density Measure of compaction 

% Mineral content Estimate of non-carbonaceous material 

THg part of available pool 

MeHg Biologically accumulated Hg species 

TP Indicator of eutrophication 

pH Low pH promotes methylation 

Eh Influences Hg methylation, phosphorus cycl ing 
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Table 2.2 Physical and biotic measurements taken at each site with the general rationale for the 
measurement. 

I Indicator I Rationale for Inclusion 

Physical 

Site location Spatial distribution 

Resource class (e.g., canal, marsh) Habitat classes of interest 

Water depth Affected by management; critical to ecosystem 
restoration; may influence anaerobic conditions 

Temperature Influences rates of chemical reactions and 
biological processes 

Weather Explanatory variable 

Soil thickness Potentia lly available Hg; pool affected by water 
management; important for marsh preservation; 
subsidence or accretion trends 

Biological Quality 

Fish tissue contaminants (Selected species) Hg exposure in aquatic organisms 

Periphyton, chlorophyll a Indicator of eutrophication 

Vegetation Indicator of resource class diversity and integrity 
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Table 2.3 Analytical parameters for marsh and canal samples. 

Indicator Variable 

Temperature 

Turbidity 

Conductivity 

DO 

pH 

Eh (Rodox potential) 

TOC 

TN 

TP 

TS04 

APA 

THg 

MeHg 

Ethylmercury (EtHg) 

%Ash Free Dry Weight 

Bulk density 

Fish length 

Fish weight 

Fish sex 

Chlorophyll cJ 

1 Marsh, canal and structure sampling 
Marsh sampl ing only 

3 Canal sampling only 
4 Canal and marsh sampling 

Media 

Water• Soil 2 Sedimenf Periphyton2 

.I 

.I 

,/ 

.I 

.I .I .I 

.I .I 

.I .I 

.I 

.I ,/ .I 

.I .I 

.I 

.I .I ,/ .I 

,/ .I ,/ .I 

,/ ,/ ,/ ,/ 

.I .I 

.I 

.I 
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marsh system whi le the term "sediment' ' is used to refer to the samples obtained from the canal 

substrate. The marsh soil measurements included soil thickness; type; pH; Eh; bulk density; 

percent organic matter; TS04 ; TP; THg; MeHg; and EtHg (Table 2.3). Sediments from the canals 

were analyzed for percent mineral content, TP, pH. THg, MeHg, and EtHg. THg and MeHg were 

measured in the discharge from the structures on a biweekly frequency. 

Biological ti ssue samples included floating and soil periphyton in which THg, MeHg, and 

EtHg were analyzed. Fish tissue samples were exclusively eastern mosquitofish (Gambusia 

holbrooki). Individual whole fi sh were analyzed for THg and the length, weight, and sex of each 

fish was recorded to provide population level statistics. The eastern mosquito fish was selected as 

a key indicator organism for Hg bioaccumulation because it is a prey species for a number of top 

predators in the system. This indicator species compliments the Florida Game and Fresh Water 

Fish Commission (FGFWFC) long-term monitoring efforts on largemouth bass. Mosquitofish has 

the following advantages as a systemwide biological indicator organism: ( I) ubiquitous across the 

system, occurring in both canal and marsh habitats; (2) short life span; (3) small home range; 

(4) biomagnifies Hg; (5) important in the aquatic food web; (6) omnivorous; (7) easily captured; 

and (8) minimal size versus Hg concentration re lationships. 

Plant community composition and presence or absence of cattails (Typha spp.) and 

Periphyton mats were used as qualitative indicators of marsh habitat (Table 2.2). The dominant 

and secondary plant communities occurring at each site were identified as well as the community 

sampled. In addition, the presence or absence of cattails and floating periphyton mats were made 

from a secondary rev iew of two 35 mm photographs taken at different angles at each marsh 

sampling location. The presence of a single cattai l or periphyton mat was enough to indicate 

presence as long as these indicators were visible in both photographs taken at each sampling 

point. Although no formal plot size or distance criteria were established for habitat indicators, 

plant species or plant types had to be identifiable in the photograph to be included in the 

qualitative assessment of marsh habitat. 
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2.3 Design Summary 

The EPA Region 4 South Florida Ecosystem Assessment Project design was RTS 

probability sample of the canals and marshes of South Florida. The project was designed around 
the seven policy questions listed in Section 1.3, and focused on providing preliminary answers to 
assessment questions pertaining to magnitude, extent, and current conditions, and on providing a 
basel ine for assessing future trends. 

Because the sample was a probability sample, model-free inferences to the sampled 

population are possible. The sampled population was approximately I, 200 km (750 mi) of canals, 
which were sampled in September of 1993. May and September of 1994, and May of 1995, and 

approximately 7,800 km2 of marsh that were sampled in Apri l and September of 1995, and May 
and September of 1996. Design-based descriptions of this population regarding extent, 

magnitude, and current condition can be obtained without appeal to any additional statistical , 

biological, or mechanical model. In particular, a model of spatial or temporal correlation is not 

required. Such models may be built using the data resulting from this program, but estimates of 

magnitude, extent, and current condition are available from a strictly design-based approach. 

The canals and marshes were sampled independently. The canal sample was equiprobable, 
as was the marsh sample except for the BCNP. The BCNP was sampled at one third the intensity 

of the remainder of the marsh. Thus, the only instance when the probability weights need to be 

accounted for in analyzing the data is when BCNP data is mixed with other marsh data (e.g., if a 

median value for the entire marsh were being estimated). Furthermore, the RTS design capitalizes 
on any spatial panern that ex ists in the response on a scale comparable to the grid spacing in such 

a way as to give a more precise result than would ordinary random sampling. These two facts, the 
equiprobable sampli ng and the increased precision of the RST, mean that standard statistical 

analyses wi ll yield unbiased estimates of population characteristics, and conservative estimates of 

precision. 

2-15 



Figure 2.1 
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randomly arranging them in a linear order so a systematic sample of 50 sites/cycle 
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Figure 2.3 200 sampling sites are located on over 1,200 km of canals. 
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Figure 2.4 500 sampl ing sites are located on over 7,800 km2 of marsh. 
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